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A series of channeling-radiation experiments for incident electrons of
16.9, 30.5, and 54.5 MeV has been performed, using a type~Ila natural diamond
23 um thick. Channeling-radiation transition energies calculated with the
standard (Hartree-Fock) potential are in good agreement with the observed
results for the (100) and (110) planes as well as for the <100> axis at
all energies, but are in error for the (111) plane. Corrections to the (111)
potential due to anisotropic electron distributions which are based upon
x-ray-diffraction data result in calculated transition energies that are in
better agreement with the observed data; an empirical (111) potential yields
calculated transition energies which are in even better agreement with the
data. Calculated linewidths are considerably narrower than the observed
values; this disagreement probably results from incoherent scattering by
crystal defects having an average spacing of approximately 1 pym. The
transition energies are shown to scale as 75/3 for transitions involving
states that are localized close to the atomic planes and as 72 for those
localized close to the midplane regions. Free-state populations are shown to
increase relative to bound-state populations with incident electron-beam
energy. Channeling radiation has been shown to constitute a practical source
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I. INTRODUCTION

In this paper we report observations of channeling radiation from
electrons incident along the axes and planes of a diamond crystal at electron
energies of 16.9, 30.5, and 54.5 MeV. In addition, the experimental and
calculational methods used by our group are described in some detail.

Finally, an analysis of the suitability of channeling radiation from such a
crystal as a useful source of x-rajﬁ is carried out.

Channeling radiation is produced when relativisfic charged particles such
as electrons or positrons enter a crystal along a direction that is very close
to one of_high symmetry (an axis or a plane), and are channeled along that
direction. Quantum-mechanically, the charged particle can be considered to be
bound by the transverse electrostatic potential of the crystal axis or plane,
and channeling radiation occurs as spontaneous transitions between eigenstates
of this potential. In the longitudinal rest frame of the electron, these
transitions have energies on the order of hundreds of eV, but in the
laboratory frame there is a relativistic (Doppler) increase in the emitted
photon energy by a factor of 2y, where y is the ratio of particle energy
to rest energy. For the electron energies of our experiments, channeling
radiation is observed in the energy region from tens to hundreds of keV.

Channeling radiation has several interesting and potentially very useful
characteristics: it is bright-;often more than an order of magnitude brighter

than bremsstrahlung; it is of narrow linewidth in the spectral peaks; and it is

forward-directed with an angle of emission 6 £ 1/y. Also, the channeling
radiation from planar-channeled electrons is linearly polarized in the
direction perpendicular to the channeling plane, while that from axially

channeled electrons has a component of linear polarization when the
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incident beam is directed at a nonzero angle with respect to the channeling
axis. In addition, because the channeling radiation has the same time
structure as the incident electron beam, which can be bunched in pulses as
narrow as several picoseconds, the pulse of radiation can be of extremely
short duration. These qualities make channeling radiation a unique photon
source in much of the x-ray spectral region.

Diamond is an eminently suitable crystal to use for channeling-radiation
experimental studies because of its low Z and because its very high Debye
temperature (2000 K) results in a small one-dimensional rms thermal-
vibration amplitude (0.042 A), about half that of silicon (0.075 &). This
latter property is important because channeling-radiation linewidths are
strongly dependent upon the lifetimes of the initial and final eigenstates,
which are shortened by thermal incoherent scattering. Diamond does, however,
suffer from the drawback that typical crystal quality is much poorer than that
of silicon, for example, for which essentially perfect crystals are readily
available. Observations of electron channeling radiation for diamond have

been reported previously forelectrons of a few MeV,! = 54 MeV,2~* and in

the GeV energy region.5?¢



II. THEORETICAL CALCULATIONS

A. Energy Levels

Channeling-radiation transition energies are computed by solving a

many-beam formulation of the Schrédinger equation

[I512/2my + V()T x(F) = E x(F) (1)

where 3 and m are the momentum and rest mass of the particle, E is its energy,
x(?) is the wave function associated with the particle, and V(F) is the
potential function in the laboratory frame. The Schrbdinger equation (rather
than the Dirac equation) is used here for describing the motion of the
electron along the transverse coordinate T because the transverse motion is
nonrelativistic; that is, the depth of the potential well in the rest frame of
the electron (yV) is much smaller than its rest mass. Of course it can be
shown that the Dirac equation reduces to the Schrodinger equation under these
conditions. The many-beam formulation was first utilized with reference to
channeling phenomena by Andersen_gg_gl.’ (This approach is similar to the
plane-wave expansion for electronic energy levels in crystals.) In this
formulation it is recognized that the lattice potential is periodic and can be

expanded as a Fourier series, so that in the axial case
> 1g*JF
V(r) =) v, e°n (2)
n g,
where the En's represent transverse reciprocal lattice vectors and the summation
is over all of these vectors. In the planar case, the above equation simplifies
because ¥ + X always is taken to be normal to the plane and E + g is the
reciprocal lattice vector normal to the plane, so that the planar potential

can be written as



Vix) =Y v e [n=..,-1,0,1,2 .0 . (3)
n

In both cases, the sums are truncated after a finite number of terms ("beams")

for computational purposes.

The eigenfunctions are two-dimensional (axial case) or one-dimensional

(planar case) Bloch functions of the form

x(F) = ;ér-eiti'? L e 19y F (axial) or (4)
n “n
x(x) = ;%f-eikx ) ch e1ngx (planar) (5)
n

where S and L are the respective normalization area and length, and ;t and k
are momentum vectors lying in the first Brillouin zone.

When the above expressions are substituted into Eq. (1), the problem of
solving for the energy eigenvalues and wave functions reduces to finding the

eigenvalues of a (sometimes large) matrix A, whose components for the axial

case are
Aom = v(an;am) (for n # m) and (6)
YR o R A (7)
nn ~ Zmy 9n o

and for the planar case are

Am = V(n-m)  (for n #m) and (8)
A= (k+ ng)% (9)
nn ~ Zmy ng Yo



The Fourier components v§ or v_ can be computed conveniently from tabulated

n
electron scattering factors fe(s) which are proportional to the Fourier transforms

n

of the potential. These scattering factors are defined as

_ 2me sin(4wsr
fe(S) = —K-—z- . V(Y‘) ST dr

0 B

(10)

where V(r) is the atomic potential and 4rs is the change in the magnitude of
the wave vector of the electron in a scattering event. Analysis shows that

the Fourier components can be written for the axial case as

Ig I
v-an = an (11)

and for the planar case as

v, ‘ } : (12)

Here S» or Sn is the structure factor for the particular reciprocal lattice
“n

vector, defined for a single-element crystal as
> >
S =% y e'5°%n (13)
9 ¢ J

where Vc is the volume of the unit cell and'?j are the coordinates of the atoms
in the unit cell.

Near r = 0, the potential is smeared out by the thermal vibrations of the
lattice. As is customary in the analysis of x-ray-diffraction data, we assume
that this thermal smearing can be described by a convolution of the static

potential with a Gaussian having a width equal to the thermal-vibration



amplitude. However, since the calculations are performed in reciprocal space,
the convolution is much more easily accomplished: it consists of multiplying

the Fourier coefficients by a Debye-Waller factor, defined for the axial case

as

0, = expl- 3 (1§, 1u,)?] (14)

and for the planar case as
D. = exp[- ](ngu)zj (15)
p Z )

Here Uy is the two-dimensional rms vibrational amplitude, generally taken to
be ¥Z u, where u is the one-dimensional vibrational amplitude.

Clearly, the axial and planar calculations are very similar; with the
identification ng + En they are almost identical. However, for actual
computation the planar case is much simpler, because it is only a
one-dimensional problem, with just one transverse reciprocal lattice vector
(and, of course, its multiples), thereby avoiding vector calculations.

The precision of these many-beam computations depends largely upon the
number of reciprocal lattice vectors that one uses. For example, the simplest

meaningful calculation for the axial case involves three reciprocal lattice

vectors: the two basic reciprocal lattice vectors ('§lo and EOI) and the
zero vector. We refer to this as a 3x3-beam calculation; as can be seen from
Fig. 1(a), there are only nine linear combinations of these vectors, resulting
in a 9x9 matrix to be solved.

For the planar case, by contrast, a 9x9 matrix, which we refer to as a
9-beam planar calculation, allows one to use vectors which reach considerably
further into the reciprocal lattice, as can be seen from Fig. 1(b). Moreover,

the potentials and eigenvalues converge much more slowly for the axial case
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than for the planar one, although the magnitudes of the Fourier coefficients
decrease with the magnitude of'§ at about the same rate for both cases. This
is because increasing the number of beams adds many more reciprocal lattice
points (although with smaller Fourier coefficients) for the axial case than it
does for the planar one. Hence for the axial case the high-magnitude
reciprocal lattice points have a much larger effect than they do for the
planar case, and the calculations converge much more slowly for the former
than for the latter. This is purely a consequence of the one-dimensionality
of the planar problem in contrast with the two-dimensionality of the axial
problem, but it does mean that for a given amount of computing power the
planar case can be calculated with considerably more precision. As an
illustration, Fig. 2 shows how the potential converges with matrix size for
the diamond <100> axis [Fig. 2(a)] and (100) plane [Fig. 2(b)]. The (100)
planar potential is very well described by the 13-beam calculation (requiring
the solution of only a 13x13 matrix), whereas the <100> axial potential

sti1l has not yet converged in the 11x11-beam calculation (already requiring

the solution of a 121 x 121 matrix).



B. Selection Rules and Transition Strengths

Channeling radiation results when a channeled electron makes a transition
between an initial eigenstate |i> and a final eigenstate [f>; the emitted
photon has energy Ec. = (Ef - Ei)' For a given spectral resonance, the
integrated intensity is proportional to the transition strength. In the
dipole approximation, the strength of a transition is proportional to the
transition energy Efi and to |63>|2 (see, e.g., Ref. 8), where <p> = <f[p|i>.
The conditions on |f> and |[i> in order that <f[3|i> # 0 are the
selection rules of the system.

In the diamond crystal, a proper choice of origin leads to potentials
which are symmetric with respect to a displacement coordinate ¥; that is,

V(¥) = V(-F). This in turn implies that each of the eigenfunctions |i> and |f>
has a definite parity, odd or even.

For the planar éase, the transverse potential is one-dimensional, and
eigenfunctions can be characterized by a single quantum number n (plus the
transverse wave vector k). As is shown in Fig. 3, the parity of the
eigenfunctions (for k = 0) alternates from even to odd (n = 0 has even parity).
For k # 0 the states do not have definite parity, but when there is no band
structure they do, and this is very nearly the case for all tightly bound states.)
Therefore, the matrix element <f|3|i> is equal to zero unless the initial and
final eigenstates have opposite parity -- in other words, unless An (between
|f> and |i>) is odd. Normally, the An = 1 transitions dominate the
spectrum, but An = 3 transitions have been seen as well.®

For the axial case, the potential acting upon the more tightly bound
electrons is almost cylindrically symmetric, and the eigenfunctions have an

angular-momentum quantum number £ in addition to the principal quantum



number n. Following common spectrographic notation, we label the
angular-momentum states with £ = 0;1,2,3,... as s, p, d, f, etc. The
two-dimensional angular-momentum eigenstates are doubly degenerate, except for
the nondegenerate £ = 0 state. As a.consequence of this symmetry, the
selection rule for transitions between deeply bound levels in such a potential
is AL = £ 1. However, because this symmetry is broken (usually weakly) by
the neighboring strings, the weakly bound states near the top of the potential
well can undergo A% = 2 transitions, although with much lower
probability. These considerations are borne out by our many-beam analysis.
The matrix elements, and hence the transition strengths, are computed
readily with the many-beam formulation. Since B is proportional to §, which
has the periodicity of the lattice (as do the many~beam representations of the
channeling wave functions), we can write the matrix element as

. fyr 1 >
-+ 16
% (an) an |9n| (16)

for the axial case or

Y ()" ¢l (ng) (17)
n

for the planar case. For the axial case the matrix element is usually
different along the orthogonal x and y directions, so that it is customary to
choose the x-direction to 1lie along one of the basic transverse

reciprocal-lattice vectors, compute éﬁx> and é§y>, and then define

2

2 2 +>
+ L ]
<py>

>
<p>

<+ >
pX



C. Linewidth Calculations

The present calculation of channeling-radiation linewidths takes into
account several effects, and the total linewidth is obtained from the
quadrature sum of the individual factors.!®*!! The elements of our

linewidth calculations are discussed here in their approximate order of

importance.
1. Limited coherence length

Even in a perfect crystal, an energetic charged particle will be
scattered by collisions which have small impact parameters with the vibrating
atomic nuclei. From the chaﬁneling-radiation viewpoint, these collisions have
a probability of causing a nonradiative transition of the channeled
(radiating) particle either to other bound states or to the unbound continuum;
in the latter case, the channeling radiation ceases.

The coherence length of a state is defined as the distance at which the
occupation probability of that state decreases to 1/e of its initial value.

If the transition is from state 2 to state 1, then the total effective

coherence length is defined by

(18)

+

2| —

1.1
Lo 4
where L and EZ are the coherence lengths of the individual eigenstates.

The full-width-at-half-maximum (FWHM) linewidth rcoh resulting from this

mechanism is then

2
_ Hic
Feon = 25 1)

and the resulting lineshape is Lorentzian.
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In order to compute coherence lengths the calculations used here employ a
complex potential, the imaginary part of which causes scattering to other states,

free or bound. The coherence length of a given state j is given by

g = - -SBe (20)
J 2<Vj>

where <v}> is the expectation value for the energy of the jth

of the imaginary part of the potential. The imaginary parts of the individual

state

Fourier coefficients are written (see Ref. 10) as

o

oo
P . ;ﬁ FED F(331 [e Do s Gy g g (21)
g Jo
(originally derived by Radilz). Here, Qi is the Fourier coefficient
of the optical potential for the reciprogal lattice vector § and ms = u252/2
is the Debye-Waller factor. The area of integration is the plane normal to
the beam direction.
If Gaussian approximations to the electron scattering factors are used,
then the integral can be evaluated in closed form.!® However, Gaussian
parametrizations are not accurate for large values of s, and this fact,

although insignificant for eigenvalue calculations, is important here because
the high-s Fourier coefficients describe the potential very close to the nucleus
(£0.04 R), where most of the scattering occurs. This is especially

important for diamond, because the details of the potential very close to the
origin are not as obscured as for other crystal species, owing to its very low
thermal-vibration amplitude. In order to take into account the high-s

correction to the Gaussian scattering factors, we have performed the

integrations numerically. The shift which results from the use of the more
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accurate potential (about a 15-t0-20% increase in the FWHM linewidth from this

source) is significant.

2. Doppler effects

A spread in the linewidth of the radiation from planar-channeled
particles arises from the fact that not every particle that radiates is moving
directly towards the detector when it does so. This could result from
multiple scattering parallel to the channeling planes in the crystal, from
nonzero beam divergence, and from other effects as well.

The average scattering angle A6 resulting from multiple scattering in

the crystal can be approximated as!?

80 = (14/E) /I T [V + (1/9) tog (Z,/1)] (22)

and

('yAG)Z (23)

el

where Ee is the beam energy, Zo is the crystal thickness, and L is the
radiation length. For the 23-um diamond crystal of the present experiment,
these average multiple-scattering angles range from 2.0 mrad (at 54.5 MeV) to
6.6 mrad (at 16.9 MeV).

This scattering angle applies only for the case of planar channeling,
where the electrons are free to scatter in the planar direction while still
being channeled between planes. For the case of axial channeling, the
channeled particles are constrained in both transverse dimensions, and no

broadening from multiple scattering results.
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A significant aspect of the line broadening from multiple scattering is
that (unlike broadening from coherence-length effects) it is asymmetric, and
occurs only on the low-energy side of the calculated (0°) transition energy.
This asymmetry results from the fact that the observed transition energy is
highest when the channeled particle is moving directly towards the detector
when it radiates, and a deflection in any direction will produce the frequency
reduction [of (yAe)ZJ noted above. Therefore, we should observe
low-energy "tails" for some channeling-radiation transitions, which in fact we
do.

Another source of Doppler broadening would be present if the crystal had
an appreciable mosaic spread. If the mosaic spread is characterized by an
angle em, the electrons would be deflected by a constant em, and a
broadening of Aw/w = (yem)2 would result. The angle O is fixed, so
that Aw/w from this mechanism would increase as 72 and become dominant
at high beam energies. Because this is not observed in our data, we conclude
that the diamond crystal that we used has negligible mosaic spread.

Other sources of Doppler broadening might be (a) nonzero crystal and beam
size and (b) nonzero detector aperture. In our system, however, these sources
are eliminated by two collimators located between the detector and the target
which allow the detector to view only a very small portion of the target.

Nonzero beam divergence also is a factor, but because it was only 0.3 to
0.6 mrad for the present experiments, it is negligible in comparison with
multiple scattering. Multiple scattering contributes about 5% (Aw/w) to
the linewidth. Unlike the coherence-length effect, this effect is almost

independent of y, since yA6 is nearly constant.
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3. Bloch-wave broadening

In the many-beam analysis the eigenfunctions are Bloch functions, and the
eigenvalues are dependent upon the values of";t or k used in Egs. (7) or (9).
For the lower-lying states, this broadening is completely negligible; however,
for states lying near the top of the potential well, this effect can cause

considerable broadening, as is illustrated below in the figures of planar

potentials.
4. Detector resolution

The resolution of the photon detector has the effect of spreading a
monoenergetic line to 2 keV FWHM [for the Ge(Li) detector used for the runs at
16.9 and 54.5 MeV] or to 1 keV FWHM (for the intrinsic Ge detector used for
the run at 30.5 MeV). 1In general, this effect is not as important as the

coherence length or Doppler effects.
5. Energy spread of the electron beam

The dependence of the channeling-radiation transition energies on beam

energy (ymcz) is often described as a power law,!? j.e.,

o (24)

where Eo and a are constants, with a ranging typically from 1.5 to 2.0
(see below). Taking a = 1.6 and noting that the energy spread of the beam

for the present experiments was only 0.25%, we observe that a spread in

-14-



linewidth of only 0.4% is produced by this mechanism. This is negligible in

comparison with the other line-broadening mechanisms discussed above.

6. Finite crystal thickness

Another line-broadening mechanism results from the finite thickness of
the crystal. This mechanism is similar but not precisely analogous to
coherence-length broadening because when the channeled electrons reach the
exit face of the crystal, the occupation probability of any given state does
not continue to decrease exponentially as before, but instead drops abruptly

to zero. The linewidth from this finite-thickness effect Tp is then given
by

Iy = amyHic/D (25)

where D is the thickness of the crystal.

This mechanism is important when the crystal thickness is comparable to
the coherence lengths of the individual eigenstates. For the present case
D (= 23 ym) is much larger than the coherence lengths, which we calculate to
be less than 4 um for almost all of the states involved. Therefore, this

mechanism was neglected in our Tinewidth computations here.
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ITII. EXPERIMENT
A. Experimental Apparatus and Techniques

Although earlier accounts of the experimental apparatus and technigues
used for the present measurements have been given in Refs. 11, 14, and 15, a
more complete and up-to-date description is presented here.

The Lawrence Livermore National Laboratory Electron-Positron Linear
Accelerator is a high-current, five-section, S-band linac, capable of
operating between 5 and 170 MeV. When fully loaded (at A70 MeV), its
average electron beam current can reach 700 pyA. Its maximum (short-) pulse
repetition freguency for normal operation is 1440 s'], which is used for
channeling-radiation (or other) experiments for which the counting rates are
limited by pileup considerations. Positrons are produced by pair production
in a thick, water-cpoled, tungsten-rhenium converter positioned several meters
downstream from the accelerator, upon which a 120-MeV, 180-pA (average)
electron beam is directed and focused (by steering coils and a quadrupole
triplet). The positron or electron beam is energy-analyzed with a bending
magnet and slit to AEe/Ee = 0.1 - 0.2% for electrons or to 0.2 - 0.4%
for positrons. Its angular divergence is then limited by directing it through
a thick copper collimator of diameter 2.4 mm for electrons or 4.9 mm for
positrons. The resulting beam current is limited further with the linac gun
to a level which results in a counting rate (in the photon detector) which is
low enough so that pileup is not significant. The final beam current ranges
from a few pA to a few tens of pA, depending upon the species of crystal under
study, its diameter, thickness, and orientation, and the beam energy and

polarity. The beam~transport system (other than steering coils) up to the
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point where the beam enters the experimental cave consists of four dipoles,
four quadrupole singlets, and three quadrupole doublets (see Refs. 16 for
further details).

Figure 4 shows a schematic diagram of the experimental arrangement used
for radiation measurements. After the energy-analyzed and collimated beam of
positrons or electrons is transported through a heavy shielding wall into the
experimental cave, it is defocused by an asymmetrically split quadrupole
triplet to give a low-divergence (nearly parallel) beam incident upon the
crystal in its goniometer. After it has passed through the crystal, the
charged-particle beam is swept by a magnet into a 5-m deep hole in the floor,
through a large paddle-shaped plastic scintillator which serves as a beam
current monitor. (The paddle was calibrated against a Faraday cup.) A thick,
4.9-mm diameter tantalum collimator positioned approximately one-third of the
way from the crystal to the photon detector limits the angular divergence of
the forward photon beam and also prevents the photon spectrometer [a large
Ge(Li) or intrinsic-germanium detector] from viewing the crystal holder and
other potential sources of background. Another, larger, brass collimator
(19 mm in diameter, not shown in Fig. 4) is positioned just upstream of the
photon detector, and additional lead shielding surrounds the detector. With
this arrangement, background counting rates taken with no crystal in place are
negligible.

A critical factor in performing channeling-radiation experiments is the
divergence of the incident beam. Since the characteristic angle for the
process is 1/y, an angular resolution at least an order of magnitude smaller
is required in order to obtain data of sufficient precision to compare with
the results of theoretical calculations; for y = 100, for example, a

beam divergence larger than 1 mrad is inadequate. Moreover, the critical
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angle for channeling is a few mrad for electrons of a few tens of MeV, and
varies as y"]/z; therefore, in order that a large fraction of the beam be
channeled, a beam divergence <1 mrad is required. The experimental
arrangement used for obtaining a very low-divergence beam is shown in Fig. 5;
this arrangement is used as well for measurements of the transmission of
positrons or electrons through crystals. A CsI scintillator, ruled with grid
lines, is placed at the exit window of the vacuum pipe and viewed (through a
mirror) with a television camera equipped with an image intensifier for high
gain. The television signal is processed by a color quantizer, which assigns
a different color to each of ten intervals of intensity. The upper and lower
thresholds for each color are independently adjustable. When viewed by a
high-quality color-television monitor, this gives a characteristic,
muiticolored bull's-eye pattern that greatly facilitates beam tuning. The
beam is tuned through a removable collimator 9.6 mm in diémeter positioned
Jjust upstream of the goniometer. With the sweeping magnet off, the beam pipe
between this collimator and the CsI scintillator degaussed, and no crystal in
the goniometer, the beam is tuned for miminum divergence. This is done by
requiring a beam spot on the CsI scintillator that is as nearly as possible
the same size as the collimator diameter when nearly 100% of the beam passes
through the collimator, as measured with a plastic scintillator paddle
positioned just downstream of the CsI scintillator. The actual beam size and
shape are measured subsequently with a small plastic scintillator button
positioned at the same location. With this scintillator button, the beam is
scanned both horizontally and vertically (in the transverse plane), with the
CsI scintillator removed. By scanning the beam both with and without the
collimator in place, the beam divergence (or convergence) is measured

directly. For recent experimental runs, the beam divergence, both for
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positrons and for electrons, has been measured to be at the limit of
sensitivity of this apparatus (£0.1 mrad), and hence is no longer a factor

in considerations of angular or energy resolution.

With the scintillator button centered on the beam, the tuning collimator
and the CsI scintillator removed, a crystal mounted in the goniometer, and the
photon collimator (see Fig. 4) inserted along the beam line, the arrangement
of Fig. 5 is used to make positron- or electron-transmission measurements.

The crystal mapping is achieved most quickly and easily with
positron-transmission scans, an example of which is shown in Fig. 6(a). One
sees transmission peaks corresponding to planar channeling of the positrons
(since the channeling directions are characterized by reduced scattering),
from which a map of the crystal, like the one shown in Fig. 7, is
constructed. One also can map the crystal, if it is of sufficient size and
quality, with electrons, but the transmission dips for electrons (directions
of increased scattering) are much smaller in their relative channel-to-random
signal ratios than are the corresponding peaks for positrons.

Once the crystal is mapped by planar scans, the locations of the axes can
be determined from the intersections of the planes, as can be seen in Fig. 7.
When transmission scans are made through an axis, the channel-to-random signal
ratios are much larger than for a plane, as shown in Fig. 8. Figure 8(a)
shows a positron scan, with its characteristic prominent compensation
shoulders (because of the conservation of the number of charged particles)
just astride the large channeling peak. Figure 8(b) shows the characteristic
"flying-W" pattern for an electron scan; the central peak results from the
capture of incident electrons into bound (channeling) states of the deep axial

string potential. (The compensation shoulders for electrons are much broader.)
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Once a crystal has been mapped, photon spectra can be obtained (with the
experimental arrangement shown in Fig. 4). Prior to this, however, it is
important to scan the crystal orientation using the photon detector itself, in
order to verify that the direction of the crystal plane or axis under study is
truly along the beam line, since the positron (or electron) beam might have
been deflected slightly by residual magnetic fields during the mapping scans.
Figure 6(b) shows the results of such a photon scan for the (110) plane in
silicon, where the detected photons between 20 and 130 keV (for incident
54-MeV electrons) are plotted against the crystal tilt angle on a greatly
expanded scale. [The width of this peak exceeds the critical angle here
because free-to-bound transitions increase the low-energy photon yield in an
angular range wider than that over which bound-state channeling occurs;
moreover, coherent bremsstrahlung (which are free-to-free transitions) becomes
important in the angular region just outside the critical angle.] 1In
favorable cases, the crystal can be mapped entirely by means of photon scans,
with no need for transmission scans; but because the data-collection rate for
photon spectra is limited by pileup, such a procedure is tedious and
time-consuming. Finally, it should be noted that measurements with fine
angular resolution require a goniometer capable of small angular steps [the

data of Fig. 6(b) were obtained in 0.07-mrad steps].
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B. Experimental Parameters

The diamond used for all of the experimental runs reported here is a
Type-1la natural diamond, free from nitrogen-platelet defects. It is 23 um
thick and is cut normal to the <100> axis.

Three different electron beam energies were used: 54.5, 30.5, and
16.9 MeV. For all energies, the beam was energy-analyzed to less than 0.25%.
For the 54.5- and 30.5-MeV runs the angular divergence of the beam incident
upon the crystal was <0.3 mrad FWHM. At 16.9 MeV, the beam divergence was
approximately 0.6 mrad FWHM horizontally and 0.4 mrad FWHM vertically (an
elliptical beam).

For the 54.5- and 16.9-MeV runs, a Ge(Li) detector was used, with an
energy resolution of A2 keV FWHM. The channeling-radiation photons were
incident upon this detector after passing through a total of 0.4 mm of
aluminum (in the detector and beamline windows). The detector efficiency for
this system is constant for photon energies between approximately 30 and
120 keV, and decreases for photons above and below this energy range. The
decrease in system efficiency on the low-energy side results mainly from
absorption in the aluminum windows.

For the 30.5-MeV run, an intrinsic Ge detector with an energy resolution
of ~1 keV FWHM was used. The photons incident upon this detector passed
through a total of 1.0 mm of beryllium in the detector and beamline windows.

This use of beryllium windows greatly enhances the detector-system efficiency

in the 30-to-10 keV energy range.
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IV. DATA PROCESSING

A. Data Acquisition

Figure 9 shows a block diagram of the data-collection electronics. The
heart of the data collection and storage system is a multichannel analyzer
(MCA). The detector pulses are amplified by a spectroscopic amplifier and
presented to the MCA for pulse-height analysis. The gain of the amplifier is
adjusted so that 1024 channels of the MCA span the photon-energy range from
zero to ~700 keV. A coincidence is demanded between the detector pulse and
a gate generated by the accelerator trigger pulse so that a detector pulse is
accepted only when the beam is on. The length of an individual data run is
preset by gating the electronics "on" until a fixed, predetermined amount of
beam flux has passed through the beam monitor (and the crystal).

Current normalization is accomplished by measuring the current from the
photomultiplier tube of the beam-monitor (paddle) scintillator in the beam
dump with a picoammeter having a voltage output. This output voltage is
converted into a series of pulses by a voltage-to-freguency converter. When a
preset number of these pulses has been counted by a controller, the controller
inhibits the flow of coincidence-gate pulses to the MCA, so that data
collection ceases. Using this approach, photon spectra can be normalized

properly to one another even when the beam current fluctuates significantly

during the experimental runs.
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B. Data Reduction

The photon spectra collected by the MCA are calibrated in energy with the

use of characteristic spectral lines of several radioisotopes, usually 24]Am

]37Cs. The spectra are processed as follows: first, a smoothed

and
background spectrum (obtained with the crystal oriented randomly in a
nonchanneling direction) is subtracted, channel by channel, from the data
spectrum. This background spectrum usually is obtained for several crystal
directions which do not correspond to any axes or planes, and hence it should
have no channeling component. A raw data spectrum is shown in Fig. 10,
together with a random spectrum below it. The two spectra merge above about
500 keV, where no channeling components (either bound-to-bound or
free-to-bound transitions) are expected for this plane and energy; this is a
good indication that the current flux has been normalized properly.

After the background spectrum has been subtracted, the remaining spectrum
consists of channeling-radiation lines and a "bump" resulting from the
free-to-bound transitions. A least-squares curve fit is performed, using
Lorentzian lines characterized by independent (and non-interfering) energy,
width, and amplitude parameters. (Lorentzians are used because this is the
resultant shape when transition linewidths are dominated by coherence-length
effects. The use of Gaussian lineshapes produces essentially no shifts in the
measured parameters.) In addition, a second-order polynomial is used to
simulate the free-to-bound bump to aid the fit. These fit§ are not unique;
different choices for the polynomial sometimes lead to equally good
least-squares fits. However, the line energies are always determined quite
accurately. The linewidth results also are satisfactory, although they are

characterized by uncertainties that are considerably greater than those for
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the energies. The amplitude results, however, sometimes vary considerably
with the choice of the fitting function. Figure 11 shows the background-
subtracted and fitted results for the data spectrum of Fig. 10. Al11 of the
spectral results presented in subsequent figures have been corrected for the

random-direction background in this manner.



V. RESULTS

A. The (100) Plane

It is of great interest to observe the qualitative changes in the
channeling-radiation spectra as the incident electron energy is varied. The
(100) plane has the shallowest potential well of the major planes, and at
16.9 MeV only one state (n = 0) is bound (the n = 1 level is broadened into
the continuum), as is shown in Fig. 12(a). No clear transition is observed in
the corresponding experimental spectrum, shown in Fig. 12(b), partly because
the transition is weak and its expected energy lies well below 20 keV, where
the detection system is quite inefficient. At 30.5 MeV, both the n = 0 and n
= 1 states are tightly bound [Fig. 12(c)], and a single strong peak emerges,
at 43 keV [Fig. 12(d)]. At 54.5 MeV this 1 + O peak has increased in energy
to 120 keV [Fig. 12(f)] and has increased in width as well, and a second,
weaker peak has emerged at 65 keV, corresponding to the 2 + 1 transition.

The width of this latter peak is due almost entirely to the strong Bloch-wave
broadening of the n = 2 state [Fig. 12(e)].

The measured (100) transition energies (given in Table I) are very well
predicted by the many-beam calculations (represented by the vertical lines in
Fig. 12 and also given in Table I). For all of the planar calculations, a
one-dimensional rms vibrational amplitude of 0.042 & was used. The
electron-scattering factors fe(s) were obtained from the Gaussian
approximations of Doyle and Turner (Ref. 17), using an appropriate correction
for the values at large s, where the approximations of Ref. 17 underestimate
the scattering factors.

The linewidths, however, are in general underestimated; that is, the
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calculations predict considerably narrower linewidths than are actually
observed, most markedly for the 1 + 0 spectral line for 54.5-MeV incident

electrons. This is discussed in detail in Sec. VI A.
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B. The (110) Plane

Because the interplanar spacing between (110) planes is vZ times larger
than that for (100) planes, the potential for the (110) plane is twice as deep
as that for the (100) plane, and has at least three bound states at 16.9 MeV
[(Fig. 13(a)]. The 1+ 0 transition is observed [Fig. 13(b)] as a strong
peak at 23 keV, but the 2+ 1 and 3 + 2 transitions are too low in energy
to be observed. Surprisingly, what appears to be a free-to-bound transition
from the almost-bound n = 3 level to the n = 0 state seems to be present at
about 42 keV. At 30.5 MeV, four levels are bound [Fig. 13(c)], and all four
allowed transitions between them are seen as spectral lines, the An = 3
transition (also see Ref. 9) being at 120 kevV [Fig. 13(d)]. At 54.5 MeV, the
density of states is higher [Fig. 13(e)], and the transition linewidths are so
large that the transitions are starting to blur into one another [Fig. 13(f)]
to form a general enhancement. The 4 + 1 An = 3 transition is barely

observable at 240 keV.

The measured (110) transition energies also are well predicted by the
many-beam calculations (Table I). This indicates that the potentials used
here [and also for the (100) case] are probably correct, together with the
thermal vibration amplitude (assumed to be isotropic). The linewidths,
however, again are markedly underestimated by the calculations, particularly
for the low-n transitions. Also, the discrepancies between theory and
experiment seem to increase with increasing y. These discrepancies also are

discussed in detail in Sec. VI A.
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C. The (111) Plane

As shown in Figs. 14(a) and (c), the potential for the (111) plane
in diamond has a double minimum, corresponding to unequally spaced crystal
planes. For this case, several transitions combine to form a single strong
spectral peak. When the energy of the incident electrons increases from 30.5
to 54.5 MeV, this peak loses much of its strength relative to the
free-to-bound bump, and also becomes much broader. At 30.5 MeV [Fig. 14(b)]
two An = 3 transitions are visible at approximately 70 and 89 keV, but at
54,5 MeV [Fig. 14(d)] they are virtually indistinguishable.

It is considerably more difficult to assign a calculated peak energy for
this plane because the main peak is a composite of six (at 30.5 MeV) or nine
(at 54.5 MeV) spectral lines. For the 30.5-MeV case, the strength-weighted
mean energy of the six calculated transitions in the peak is 26.8 keV, more
than 7% higher than the observed peak at 25.0 + 0.5 keV. As can be seen in
Fig. 15(a), when Lorentzian lines of the calculated widths are fitted to the
individual transitions to form a simulated spectrum (the solid curve), it is
evident that the calculated Tinewidths are again much too narrow. According
to theory, the large peak should have easily resolvable structure; yet the
individual transitions are not observable in the spectrum, except for the An =
transitions and the 2 + 1 transition (visible as a small peak at 35 keV).
When each transition is arbitrarily and equally broadened just enough (by
4 keV for this case) to obscure the individual lines and produce a single
peak, the dashed-curve spectrum in Fig. 15(a) results. This reproduces the
observed lineshape quite well (indicating a better linewidth estimate), but
the discrepancy in the mean peak energy persists, and is much larger here than

any discrepancy for either the (100) or the (110) plane.
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At 54.5 MeV, the situation is similar, and the discrepancy is even
larger. As can be seen in Fig. 15(b), the individual transitions are not
observable, although calculations predict that they should be, showing again
that the calculated linewidths are too narrow. When the nine individual
transitions again are broadened just enough (by 9 keV for this case) to
produce a single peak, the observed lineshape again is reproduced well, but a
very large energy shift is evident: the calculated strength-weighted mean
energy is 68.4 keV, almost 15% higher than the observed peak at 59.6 + 0.7 keV.
In summary, then, unlike the situation for the other major planes in diamond,
the many-beam calculation evidently cannot accurately predict the channeling-
radiation transition energies for the (111) plane. This disagreement is

discussed in detail in Sec. VI B.
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D. The <100> Axis

The potential for the <100> axis is much deeper than any of the
planar potentials, and has many bound states [approximately twelve even at
16.9 MeV, as shown in Fig. 16(a)]. The number of bound states only can be
approximated, since many of the high-n states may be bound or unbound depending
upon the value of It’ and Bloch-wave broadening (not shown in Fig. 16) effectively
produces a continuum of states near the top of the well for all incident electron
energies.

With increasing electron energy, the same trend is observed for the
<100> axis as for the planes. At the lower energies, involving relatively
few eigenstates, the transitions are strong and fairly sharp; with increasing
electron energy, they increase in number, width, and energy, and decrease in
strength relative to the free-to-bound continuum [see Figs. 16(b) and (d)].
At 54.5 MeV, the number of bound states exceeds 30 [Fig. 16(e)], and the
measured spectrum [Fig. 16(f)] is essentially featureless, although still
considerably enhanced over the continuum.

The calculated <100> axial transition energies (listed in Table II)
agree very well with the measured values. They were obtained with a
13x13-beam calculation, using a two-dimensional rms vibrational amplitude of
0.060 A, It is difficult to assign a calculated energy which corresponds
with the Towest-energy transitions observed for either 16.9 or 30.5 MeV
because there are many transitions which contribute to these peaks. Although
the simple strength-weighted average of these transitions yields a reasonable
result, it should be remembered that this is only an approximation.

Despite the overall accuracy of these results, there are a few anomalies
which merit further discussion. For example, while the energy of the 2p + 1s
transition is very well predicted for 16.9-MeV electrons, it is overestimated
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by more than 4% for 30.5-MeV electrons. The reason for this discrepancy is
not yet clear. Possibly the detailed shape of the potential very close to the
atomic string (where the 1s state is localized) is not well described by our
model. The results are better for the lower electron energy (16.9 MeV)
because there the 1s state is localized further from the string.

Another curious feature is the fact that although both the 3p + 2s and
the 2s + 2p transitions are shown by many-beam calculations to be fairly
strong [see Fig. 16(d)], they are barely (if at all) discernable in the data.
A possible contributing factor be that the 2s state has a very short coherence
length because it is localized very close to the atomic string. This would
lead to a greatly increased linewidth for any transition for which the 2s
level is either the initial or the final state, which in turn would make such
transitions difficult to distinguish from the background.

Channeling-radiation spectra for the <110> axis were obtained as
well. However, the <110 potential well is so deep (130 eV) that there
are very many bound states even at 16.9 MeV, and no discrete lines are visible
at this or higher energies (only a large general enhancement over the

bremsstrahlung background is seen).
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VI. DISCUSSION

For channeling-radiation transition energies and strengths, the agreement
between the measured and calculated values is quite good for the (100) and
(110) planes and for the <100> axis. However, almost all of the calculations
underestimate the observed linewidths. The (111) transition energies also are
not predicted accurately (the discrepancy is ~15% for the 54.5-MeV case).
These major discrepancies are discussed in more detail in Secs. VI A and B.
The subject of the scaling of channeling-radiation energies is discussed in

Sec. VI C, and that of level populations in Sec. VI D.
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A. Linewidths

The calculated linewidths are underestimated greatly in almost every
case. Roughly speaking, their agreement with the measured values is better
for transitions between high-n states than for those between low-n states.
These high-n states are localized farther from the atoms themselves, and their
transition linewidths are dominated by Bloch-wave broadening. For the low-n
states, Bloch-wave broadening is negligible, and thermal incoherent scattering
is the most important broadening factor. These facts might seem to suggest a
deficiency in the calculations of the lifetimes of states resulting from
thermal incoherent scattering. Hdwever, accurate calculations of the
linewidths for silicon and for LiF (Refs. 10 and 18, respectively) have been
made within the same theoretical framework. Furthermore, other data with
54-MeV electrons, using a synthetic diamond,2 show much narrower linewidths,
and are in fair agreement with our calculated values.

A possible explanation for these discrepancies is that the increased
Tinewidths result from electron scattering by crystal defects. Anomalous
incoherent scattering would decrease the lifetimes and hence the coherence
lengths of the bound states, leading to increased linewidths, as shown by
Eq. (18). In a simple model with an average distance (assumed to be

isotropic) between defects zd, the coherence length &, of a given state j

J
would decrease to zj, given by.
-1 ,1 (26)

Assuming that the defects act equally upon all of the eigenstates, one
can calculate the effect on the transition linewidths that a given L4

would produce. As can be seen in Table III, the arbitrary assumption that
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Ed = 0.9 um yields "corrected" linewidths which are in much better agreement
with the data for the (110) and (100) planes.

The same technique can be applied to the (111) plane. However, there the
individual transitions are in general not observable. When a Lorentzian line
of the corrected width is fitted to each of the calculated lines and the
individual contributions are summed, the resultant célculated spectra [shown
below as the dashed curves in Figs. 17(b) and (c), for the 30.5- and 54.5-MeV
data, respectively] have linewidths that are much closer to the observed data
than the original calculations. The energy shifts persist, but the calculated
line shapes are quite similar to those of the data.

In summary, the observed linewidths for all planes are much larger than
the calculated Tinewidths as well as those observed with a synthetic diamond.
The assumption of a model incorporating incoherent scattering by defects with
an average spacing of 0.9 um yields corrected linewidths which are in
reasonable agreement with the observed ones. Since there exists at present no
nondestructive method for determining quantitatively the concentration of
defects in diamond [or even by transmission electron microscopy (see, e.g.,
Ref. 19)], the use of channeling radiation as a diagnostic tool might find

useful application along these lines.

-34-



B. (111) Planar Transition Energies

As shown in Sec. V C, the calculated (111) planar transition energies
appear to be considerably higher than the observed ones. This is surprising,
since the calculated results for the (100) and (110) planes and for the
<100> axis agree quite well with the data obtained using the same crystal
and electron beam. The discrepancy, therefore, must Tie in some detail of the
calculation (or of the channeling physics) peculiar to the (111) plane.

In the framework of the many-beam formulation, when the electron energy
is taken as fixed, the following factors have a direct influence upon the
apparent position of a peak which is composed of several transitions, as is
the case for the (111) plane: (a) the thermal-vibration amplitude; (b) the
individual level populations; and (c) the shape and depth of the potential
function.

Of these factors, a signficant change in (a) is unlikely because the
(100) and (110) results using the same thermal-vibration amplitude fit the
data quite well. Implicit in the derivation of the Debye-Waller factor is the
Einstein approximation, which assumes the presence of independently,
isotropically vibrating atoms. In the tight diamond lattice (at room
temperature) this might not be strictly the case, but, in our judgment, it is
not an assumption that can be abandoned easily.

As for factor (b), all of the calculated spectra contain the implicit
assumption that all of the eigenstates are populated equally. If this were
not the case, then the strengths of each of the individual transitions would
need to be multiplied by the (normalized) fractional population of the initial
state of the transition. If, for example, at 30.5 MeV the population of the

n = 3 level were only half that of its neighbors, the apparent strength of the
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3+ 2 transition at 30 keV would be reduced, and the calculated location of
the composite peak would be shifted downward, closer to the location of the
observed peak.

However, there are at least two reasons to doubt this hypothesis. First,
multiple scattering tends to equalize the populations of all levels quickly,
within a few microns of the entry face of the crystal.!® If this were not
the case, anomalous strength distributions should be present for some of the
other planes as well, and this is not true. Second, at 30.5 MeV, the 3+ 0
and 4 + 1 transitions are visible, and they, too, are shifted in energy.
Since an unequal population distribution would affect the strengths but not
the energies, it would have no effect upon the location of an isolated peak.
Therefore, an anomalous population distribution appears to be an unlikely
mechanism to explain the energy shifts.

Turning, therefore, to factor (c), we know that the shape and depth of
the potential function is the most important factor governing the energy
eigenvalues and hence the transition energies. The potentials used in our
calculations are based upon Hartree-Fock calculations of isolated (spherical)
atoms. These calculations are incorrect for this case because the electron
distributions in the crystal are nonspherical.

Evidence for the effect of anisotropy of the electron distribution in
diamond in <110> axial channeling-radiation spectra has been presented in
Ref. 1. Just as there is an alternation of string spacings perpendicular to
the <110> axial direction, so is there an analogous alternation of planar
spacings perpendicular to the (111) planar direction. Therefore, one would

expect any modification of the potential by redistribution of the electrons to

be discerned most easily for this plane.
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The measurement of the electron distribution in the covalent bond of
diamond has been the object of considerable research effort.29°2! The most
easily quantifiable results are those of x-ray diffraction experiments
(Ref. 20; see also Ref. 21) where the experimentally determined intensities of
several x-ray Bragg reflections are found to be considerably different from
those which are predicted from standard theory, which assumes a spherically
symmetric charge distribution. These studies all conclude that there is an
enhanced electron density along the bond, and that the charge density in the
middle of the bond is about 1.7-1.8 electrons/A3. .We should, therefore,
be able to use the results of some of these studies to determine an
experimentally based potential for the (111) plane.

The intensity of x-ray reflections is proportional to the square of the
kinematic x-ray scattering factor fx(s), where s = ng/4w. This in turn is
dependent upon the charge distribution p(r) within the atom [just as fe(s)

is dependent upon the atomic potential, as shown in Eq. (10)]'7:

2 .
f,(s) = 8172me [rzp(r) 5121ggsr2 dr (27)
0

The x-ray scattering factor can be related to the electron scattering

factor by

_ 2 1
fols) = g [2 - £,(5)] (28)

2 2
where ag is the Bohr radius, # /me . Thus any change in the x-ray scattering

factor Afx(s) can be related to a corresponding change in the electron

scattering factor Afe(s) by

M (s) = - g——‘—)z AF,(s). (29)

o (4ns
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These changed electron scattering factors then can be used to determine new
Fourier coefficients of the planar potential [by Eq. (12)] which in turn are
used in the standard many-beam calculation.

The experimental data of Ref. 20 show considerable shifts in fx(s) for
the first two reflections along the (111) line. They indicate that Afx = 0.26
for the (111) reflection and Afx = 0.15 for the (222) reflection. It
should be noted that a measured fx(s) is influenced by the appropriate
structure factor (see Ref. 21 for details) and already includes
thermal-vibration effects.

These changes in the scattering factors lead to changes in the Fourier
coefficients vy and Ve The resultant potential, which we shall refer to
as the (111A) potential, together with its eigenvalues for 30.5-MeV electrons,
is shown in Fig. 17(a) as a light solid curve, along with the old potential
shown as a dashed curve. The eigenvalues for 54.5-MeV electrons are not shown
because of the many bound states involved. As can be seen, the (111A)
potential is considerably shallower in the region of the planes themselves.
This decreased depth can be understood qualitatively by considering the
enhanced density of bonds between the two closely spaced planes of atoms. If
the electron concentration in the bonds is increased as expected, then the
extra negative charge will raise the potential for incident electrons, which
is indeed what is observed.

The calculated spectra illustrated by the dashed curves in Figs. 17(b)
and (c) are obtained by fitting the defect-corrected linewidths calculated by
the methods outlined in Sec. VI A to the transition energies and strengths
computed using the “standard" potential [Figs. 14(a) and (c)]. The calculated
spectra shown by the light solid curves in Figs. 17(b) and (c) are obtained by

the same method, using the defect-corrected linewidths applied to the
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transition energies and strengths computed using the (111A) potential. It can
easily be seen that the results of the computations using the (111A) potential
are in much better agreement with the data than are those using the standard
potential, both for the peak energies and for the linewidths.

For 30.5-MeV electrons, both the energy and width of the main peak are
predicted very well, and the energies of tﬁe two An = 3 transitions also are
in better agreement: 73.6 keV calculated vs. 72 £+ 1 keV observed for the
3 + 0 transition (a 2% discrepancy), and 92 keV calculated vs. 89 + 1.5 keV
observed for the 4 + 1 transition (a 3% discrepancy). Using the standard
calculation, the energies for these transitions disagree with the data by 6% and
10%, respectively.

However, the 2 + 1 transition appears to disagree by 5% (36.3 keV
calculated vs. 34.5 + 1 keV observed). It also is not clear why more
structure is not observed in the data, as would be suggested by either of the
synthetic spectra.

For 54.5-MeV electrons, considerable improvement again is evident; both the
width and the shape of the main peak are predicted very well. The peak energy,
however, still is overestimated by 5%, (62.8 keV calculated vs.

59.8 + 1 keV observed), which is nevertheless a great improvement over the
previous discrepancy of almost 15%. Ailthough it is very difficult to extract
from the data, a An = 3 transition appears to be present at about 154 & 5 keV.
This compares with a calculated value of 162 keV for the 3 + 0 transition, a
discrepancy of only 5%, compared with one of 9% for the calculation based upon
the old potential.

This improvement in the calculated results indicates that the corrected,
experimentally based (111A) potential is a better representation of the true

(111) potential than is the standard potential and thus shows that the
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electrons are redistributed along the bond in a manner which probably is quite
similar to that suggested in Refs. 20 and 21. The authors of Ref. 1 have
analyzed the radiation from 4-MeV electrons channeled along the <110 axis

of diamond to compute a bond-charge redistribution which also is very similar
to that of Ref. 20.

We now explore the effects of further modifying the (111) potential. A
hypothetical potential in coordinate space can be postulated, and Fourier
transformed numerically. Then the Fourier coefficients v, can be extracted,
and the new energy eigenvalues and eigenvectors can be computed as before, via
the many-beam formulation. The accuracy of this technique can readily be
checked by using the unchanged Fourier coefficients i to obtain a standard
potential in coordinate space, Fourier-transforming the coordinate-space
potential numerically, and using the newly extracted Fourier coefficients
vn' to calculate new energy eigenvalues which then can be compared with the
previous values. The results are accurate easily to within 1%, which is less
than the other sources of experimental uncertainty.

We have used this technique to modify the standard (111) potential, and
have found a new potential, derived on the basis of providing a best fit to
the 30.5-MeV data. This new potential V' is related to the standard

(Hartree-Fock) potential V by the empirical relation
Vi(x) = V(x) + 1.7 exp(-x2/0.1) - 0.75 exp[-(|x] - 0.6)%/0.1]. (30)

This empirical potential, which we shall refer to as the (111B) potential,
together with its (30.5-Mev) eigenvalues, is shown in Fig. 18(a) as a heavy
solid curve, along with the standard potential, shown as a dashed curve, and
the the (111A) potential, shown as a light solid curve. It can be seen that
the (111B) potential involves considerably less change from the standard (111)
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potential than does the (111A) potential. Interestingly, it dips below the
standard potential in the region around x = + 0.6 A. This slight dip

turns out to be rather important in determining the shape of the calculated
spectra for this potential because it alters the shape of the potential in the
region where the eigenstates that take part in the bulk of the transitions in
the major spectral peak are localized.

These calculated spectra [which were obtained using the same methods as
were used for the calculated spectra of Figs. 17(b) and (c)] are shown as the
heavy solid curves in Figs. 18(b) and (c¢) (for 30.5- and 54.5-MeV electrons,
respectively). For comparison purposes, the calculated spectra obtained from
the use of the (111A) potential are shown as the light solid curves. It is
seen that the (111B) potential is slightly better than the (111A) potential
for 30.5-MeV electrons, particularly with respect to the width of the main
peak and the energy of the 3 + 0 transition. Moreover, the prediction of
the (111B) potential for the energy of the main peak of the 54.5-MeV spectrum
results in a discrepancy of less than 2%, considerably smaller than the 5%
discrepancy for the (111A) potential. This is very gratifying because the
(111B) potential was deduced solely from a fit to the 30.5-MeV data.

It is not certain whether the (111B) potential is consistent with the
other data pertinent to the electron distribution along the (111) bond.
However, the higher-order x-ray scattering factors are weak and difficult to
determine from diffraction measurements; therefore, this channeling-radiation
technique may provide us with a valuable means of investigating these
higher-order terms. In any case, it is clear that either of the two shallower
potentials discussed here would produce predictions that are in better
agreement with the positron channeling-radiation data of Ref. 3. Finally, it

is encouraging that these potentials work well for electrons at two well
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separated energies; but certainly more theoretical and experimental results
(especially at lower energies, where the An = 1 transitions should be

individually resolvable) would be very illuminating.
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C. Energy Scaling

The electron-beam energies of our experiments ranged from 16.9 to
54.5 MeV, and other data for diamond extend this range both to higher [80.2
and 110.2 MeV (Ref. 22)] and to lower [4.0 MeV (Ref. 1)] energies. Therefore,
we can observe how channeling-radiation energies scale over a very wide range
of incident electron-beam energies (8.8 < y < 217).

When a one-dimensional potential is described by a power law, i.e.,
V(x) = axm, where x is measured from the midpoint between the planes in the

direction normal to them, then the eigenvalues in the rest frame will scale as
a
72/(m+2) (Ref. 18). The transition energies will scale as #w, = ay , where

a = 2/(m+2). Multiplying these rest-frame energies by 2y to obtain the observed
photon energies in the laboratory frame, we should observe photon energies

1+2/(m+ 2
y[ /! )J, where E is a constant.!®

scaling as ﬁbl = 2E,

Qualitatively, most electron planar potentials appear to be "V-shaped"
around the origin (at the plane), except very close to it, and flatten out
gradually as x approaches dp/2, where dp is the interplanar spacing. Thus
m = 1 for eigenstates which are localized relatively close to the planes,
and m = 0 for eigenstates which are localized farther away from them.

Figure 19 shows how the eigenstates are localized for a typical plane at
the three energies of our experiment. As expected, the low-n eigenstates are
localized dlose to the planes and the higher-n ones farther away. For the
plane shown, the highest eigenstate is not even localized to a single plane.
Therefore, we expect the 1 + 0 transition to scale approximately as

5/3
fug = y / » and high-n transitions such as the 3 » 2 or 4 + 3 transitions

to scale approximately as ﬁmz « yz.

Assuming that the transition energies scale as ﬁmz = bya, we obtain
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values for a by taking the photon energies at two different values for vy,

from which

Hw
a=zn,—]} /1n{11}. (31)
ﬁwz Y2

Figure 20 shows the plot of 1og]oéﬁn) VS. 10910(7) for all of the
available planar transitions.

We see that, as expected, a is higher for the high-n transitions than
for the low-n transitions. For example, for the 1 + 0 transition for the
(110) plane, the average value for o is 1.67; for the 2 + 1 transition it
is 1.83; and for the 3 + 2 transition it is 1.92. From the simple theory
one would expect a to increase from 5/3 to 2 with increasing n, and indeed
this is the case.

A1l of the numerical results of this analysis are listed in Table IV. We
observe that for any transition other than the 1+ 0 ;ransition a tends to
decrease with increasing y. This is entirely consistent with the above
model, for as the beam energy (y) increases, the energy of an eigenstate
decreases (it moves down in the potential well) as its wave function becomes
increasingly localized near the atomic plane. Thus, transitions which are
effectively high-n transitions at a low beam energy eventually become low-n
transitions at higher beam energies, with a concomitant decrease in a. This

effect can be seen clearly here for the case of the (110) 2+ 1 and 3 + 2

transitions.



D. Bound-State versus Free-State Populations

A decrease of channeling-radiation 1ine strengths [bound-to-bound (B-B)
transitions] relative to the background bump [which consists of both
free-to-bound (F-B) and free-to-free (F-F) transitions] as the incident
electron-beam energy increases is a common feature for all of the planes and
axes in the energy range of our experiment. (This is also true for the data
of Ref. 22.) This is puzzling because we know that the strength of a spectral
line is proportional to its energy (see Sec. II B), which always increases
with electron-beam energy (as is discussed in Sec. VI C). Therefore, the
overall intensity of the F-B and F-F components must increase with beam energy
at some rate faster than that of the B-B component (the "random"
bremsstrahlung spectrum, which increases linearly with incident beam energy,
has already been subtracted from the data).

A possible reason for this phenomenon is that the strengths of the
individual F-B and F-F transitions increase with beam energy faster than those
of the B-B transitions. However, an extension of our many-beam calculation to
the first several free states shows that this increase does not occur.
Therefore, it must be the case that the overall population of the free states
increases significantly relative to that of the bound states as the beam
energy increases.

This occurs for two reasons: the first is that as the beam energy
increases, the critical angle for channeling becomes smaller, and fewer
electrons are initially captured into bound states. A calculation shows, if
we assume a constant beam divergence of 0.3 mrad, that the percentage of
electrons captured initially into the bound states of (110) diamond varies

from about 99% at 16.9 MeV to about 70% at 54.5 MeV. However, it is important
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to remember that these values are for the initial populations only, and that
the populations are redistributed by incoherent scattering mechanisms
(discussed in Sec. II C) well before the electrons have traversed a
significant portion of the crystal. In our calculations of relative line
strengths, we always assume the initial populations of the bound states to be
equal, and this assumption always has yielded good results. This population
redistribution by incoherent scattering is the most important reason for the
increase of the free-state population, because as the electron-beam energy
increases, the channeling wave functions draw closer to the planes or strings,
and incoherent scattering to other states is strongly enhanced. [Figure 19
illustrates graphically this drawing togefher of the (squares of the) wave
functions.] Some of these states may be bound; however, the total number of
available unbound states is much greater than the number of bound states, so
that the net effect is a depopulation of the bound states with respect to the
free states. As an example of this effect, the coherence length of the n = 1
state of (110) diamond at 16.9 MeV is 4.0 ym, whereas the coherence length

of the same state at 54.5 MeV is only 2.2 um.
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VII. THE APPLICABILITY OF CHANNELING RADIATION AS A PHOTON SOURCE

The ratios of the intensities of channeling radiation and bremsstrahlung
for some of the diamond axes and planes at 16.9 MeV and 30.5 MeV are among the
highest that we have observed for any crystal or energy. It is therefore of
great interest to estimate the amount of channeling radiation obtainable from
such a crystal in order to investigate its applicability as a photon source.
To do this, the amount of bremsstrahlung produced in the crystal for a given
electron flux is calculated, and an estimate of the channeling-radiation

intensity is made using the observed intensity ratios.

Assuming complete screening of the nuclear charge (valid for the

frequency interval of those photons for which fuw << Ee’ where Ee is
the electron-beam energy), one obtains for the doubly differential radiation

cross section for relativistic bremsstrahlung??:

2,2
# photons  _ -27 Z 233 1 +Ay dw
electron-cm 1.47 x 107 Nv In { 1/3}{(] 'y }'7; dQ (32)

3

where Nv is the number of atoms per cm”, Z is the atomic number,

= [(y - 1)/y ] = v/c, fw is the photon energy, Q is the solid angle,
and 8 is the angle between the electron beam line and the observation point.
The maximum allowable value for @ for a bandwidth Aw/w = 10% is

computed from the equation for the relativistic Doppler shift

A _ B(1-cose) (33)
o -BCosO
from which one obtains 8 = 5.5 mrad for 30.5-MeV electrons. Integrating the
g-dependent part of Eq. (32) numerically and solving for a beam energy of

30.5 MeV, one obtains an intensity of 1.3 x 10'3 photons/electron-cm in a

-47-



10% bandwidth, out to an angle of 5.5 mrad. OQur crystal is 23 ym thick, so
we can expect 3 x 10'6 bremsstrahlung photons/electron in this frequency
range.

A reasonable estimate for the maximum average current readily attainable
from the LLNL Tinac is ~100 pyA in a 5-mm-diameter beam. For this current,
we obtain 2 x 109 bremsstrahlung photons/second.

The highest ratio of chanheling radiation to bremsstrahlung that we have
observed is for the 58-keV line of the <100> axial spectrum for 16.9-MeV
electrons, which is 9.5:1. However, this is not an isolated line, but is
surrounded by other transitions as well as by a large free-to-bound
component. By contrast, the ratio for the 1+ 0 transition in the (100)
planar spectrum for 30.5-MeV electrons is 7.1:1 (at 43 keV) and the ratio for
the 1 + 0 transition in the (110) planar spectrum for 16.9-MeV electrons is
6.3:1 (at 23 keV), and these spectral lines are well isolated. These latter,
therefore, should be more suitable for use as a monochromatic photon source,
and are linearly polarized as well.

Thus, for 16.9-MeV electrons channeled along the (110) plane, we compute

1.15 x 10]0 photons/second in a 10% bandwidth at 23 keV. For 30.5-MeV

10

electrons channeled along the (100) piane, we compute 1.3 x 10 - photons/second

in a 10% bandwidth at 43 keV.

It also is necessary to calculate the expected crystal damage in order to
ascertain whether it is feasible to run at such a high beam current. Crystal
damage falls into two categories: radiation damage from the high-energy
electron beam and heating from collisional energy loss of the electrons as
they pass through the crystal. Both of these depend upon beam energy and
current, which we will take as 100 pA in a 5-mm-diameter beam at 30.5 MeV

(the figures for 16.9 MeV will be more favorable).
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The high-energy electron beam passing through the crystal will damage the
crystal by knocking atoms out of their lattice sites. The fraction of

electrons producing such knock-ons is.

& = N oz (34)
e

where Nv is the number of atoms per unit volume, o is the cascade
displacement cross section, AZ is the sample thickness, AN is the number
of knock-ons, and Ne is the total number of electrons. Therefore the
fraction of displaced atoms is

N o
AN _ AN _ e (35)

N,y NAAL A

where Nat is the total number of atoms being irradiated and A is the area of
the beam.

Assuming a mean displacement energy of 24 eV to remove a diamond atom
from its lattice site, we obtain o = 72 b.2* For the previously
specified beam parameters, we then can expect that AN/Nat ~ 8,2 x 10'4
for one hour; i.e., about one atom in 1200 is displaced in one hour of
operation. This is not a large fraction, and it would seem that knock-ons
would not limit operation, at least for many hours.

The collisional energy deposited by the electrons as they pass through

the crystal can be written as?®

“Z(mCZ)Z

36
(1 - 8931%(z) (36)

_ 2
Ecol = 2oC(mc)® 1n

where C = 0.15 Z/A, p is the density in g/cm3, and I is the ionization
potential [about 60 eV for Z = 6 (carbon)]. Allowing for the density

effect,25 this leads to an energy dissipation of approximately 8.8 MeV/cm
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per electron passing through the crystal. This means that a 23-um diamond
crystal will have to dissipate 2.0 W. Assuming dnly radiative cooling,
this implies that the crystal wiil heat up to approximately 800°C. The
crystal still will remain intact at this temperature, but the rms vibrational
amplitude of the atoms will be increased. The (one-dimensional) thermal

vibration amplitude Uy is related to the crystal temperature T and the Debye

temperature © by:

uy = 12,1 {[q,(-‘Ti) &+ 0.251/m} /2 (37)

where M is the atomic weight of the crystal atoms in amu and ¢(x) is the

Debye function

X

#(x) = %]—SS—— ds (38)
J (e7- 1)
Diamoﬁd has a very high Debye féﬁperature (~2000 K), so that increasing the
crystal temperature from room temperature to'810°c increases the
one-dimensional thermal-vibration amplitude from 0.042 A only to 0.060 &.
The effect of this increase is to make the potential somewhat shallower in the
center, so that the transition energies are reduced siightly. However, 800°C
is approximately the temperature needed to anneal out light radiation damage
from diamond crystals, so that the above computation of the number of knock-on
defects is an overestimate, and the crystal might in fact be self-annealing.
The calculated spectrum for 30.5-MeV electrons channeled along the (100)
plane in diamond at 810°C (neglecting random and free-to-bound components) is
shown, together with the spectrum for 25°C, in Fig. 21. It can be seen that
the calculated spectrum for the higher temperature shows slightly increased

linewidths and decreased intensity. Based upon these results, we compute (as
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before) approximately 1.1 x 10]0 photons/second in a 10% bandwidth at 40.6
keV.

In comparison, the Stanford Synchrotron Radiation Laboratory 8-pole
wiggler, operated at 18 kG with a 3-GeV electron beam will produce
approximately 5 x 10]2 photons/second-mA-mrad at 40 keV. This is broadband
radiation, however, and therefore a monochromator usually has to be used.
Thus, channeling radiation is not as bright (at this relatively low energy) as
a high-energy synchrotron-radiation source at high current. However, the
intensity of synchrotron radiation drops precipitously with photon energy
while that of channeling radiation increases, so that for photon energies of
the order of 100 keV or higher chgnneling radiation becomes the more intense
source. In any case, even at low energies, it can be seen that channeling
radiation from diamond can serve well as an intense, narrowband, polarized

source of x rays which can be utilized at many existing smaller accelerators.
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VIII. SUMMARY AND CONCLUSIONS

A series of electron channeling-radiation experiments has been performed
using a type-IIa natural diamond as target. Spectra were collected for
electron beams from the Lawrence Livermore National Laboratory
Electron-Positron Linear Accelerator of energies 16.9, 30.5, and 54.5 MeV
incident along the (100) and (110) planes and the <100> axis, and of
energies 30.5 and 54.5 MeV along the (111) plane. Detailed expositions of
both the experimental techniques and the theoretical calculations used by our
group have been given (Figs. 1-11).

The channeling-radiation spectra contain sharp and prominent structure.
For the (100) and (110) planes and for the <100> axis, one- and
two-dimensional (respectively) many-beam calculations yield transition
energies in generally good agreement with the locations of the spectral peaks
(Tables I and II, Figs. 12, 13, and 16). This good agreement indicates that
the standard (Hartree-Fock) potential and thermal-vibration amplitudes used as
input for these calculations are nearly correct, and that the theory is
basically sound. However, calculations using the standard potential
overestimate significantly the energy of the main peak of the (111) spectra,
which is a composite of several individual transitions (Fig. 14).

The linewidths observed for the spectra collected using 54.5-MeV
electrons are approximately twice as large as those observed by the authors of
Ref. 2 who used an unusually perfect region of a synthetic diamond. They also
are considerably broader at all energies than predicted by calculations .
Since accurate linewidth calculations for Si and LiF were made using the same
theory (Refs. 10 and 18), it is concluded that the above discrepancies result

from the properties of the particular diamond crystal used for these experiments.
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Calculations using a simple model which postulates increased incoherent
scattering by crystal defects of a constant average spacing yield increased
linewidths, in reasonable agreement with the observed data (Table III, Fig.
15). An average defect spacing of 0.9 ym was deduced using this method.

This technique may provide a quantitative assessment of the defect density in
diamond crystals. When defect-corrected linewidths are fitted to the
calculated transition energies for the (111) plane, the major discrepancies in
the location of the main spectral peak can be gquantified (7% for 30.5-MeV
electrons and 15% for 54.5-MeV electrons).

Using a potential based upon x-ray-diffraction data for diamond [the
(111A) potential] yields calculated results which are in much better agreement
with the data (Fig. 17). The energy of the main (composite) spectral peak is
predicted almost precisely for the 30.5-MeV spectrum and within 5% for the
54.5-MeV spectrum. Further, an empirical potential [the (111B) potential] was
derived on the basis of providing a best fit to the 30.5-MeV data. The
calculated results for the (111B) potential are slightly better than for the
(111A) potential at 30.5 MeV (especially for the location of the
An = 3 transitions), and moreover, the position of the spectral peak in the
54.5-MeV data is much better predicted [2% error for the (1113) potential vs.
5% for (111A) potential] as well (Fig. 18). In this way, channeling-radiation
data may provide a means for quantifying higher-order x-ray scattering
factors, which cannot be done with x-ray-diffraction data alone.

The transition energies have been shown to scale as a power-law function

of the electron-beam energy. Those transitions involving states which are localized
5/3
close to atomic planes scale as fw « v / » while the scaling of transitions

involving states that are localized closer to the midplane regions approaches

P
fiw « y (Table IV, Figs. 19 and 20). This is consistent with a qualitative
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description of the planar potential as a power law; i.e., V(x) = axm, with
m = 1 near the plane and m = 0 at midplane.

Random-subtracted spectra obtained from the same plane at different beam
energies show that the strengths of the bound-to-bound transitions relative to
the background bump (consisting of free-to-bound and free-to-free transitions)
consistently decreqse as the incident beam energy increases (see, e.g., Figs.
12-14 and 16). Since many-beam calculations do not indicate an increase in
the strengths of the free-to-bound transitions relative to the bound-to-bound
transitions with increasing beam energy, it is concluded that the populations
of the free states increase with respect to the bound-state populations as the
incident electron-beam energy increases. This occurs for two reasons: first,
it is likely that somewhat fewer electrons are trapped into bound states at
higher beam energies because of the decrease in the critical angle; and
second, incoherent scattering is strongly enhanced at higher energies, leading
to a more rapid depopulation of the bound states, which results in a lower
average population in these states.

Thus, we have seen that the channeling-radiation spectra from diamond
presented here contain a wealth of information and shed light on a variety of
channeling phenomena and crystal properties. Finally, we have demonstrated
quantitatively the potential usefulness of channeling radiation as an intense

source of narrowband, sharply focused, polarized x-rays.
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Table I.

Planar transition energies and linewidths.

Plane Transition Observed Calculated Observed Calculated
and energy energy linewidth linewidth
Beam energy (keV) (keV) (keV) (keV)
(100)
16.9 MeV 1+ 0 not observed 14.4 not observed 5.65
30.5 MeV 1+ 0 43.0 + 0.3 43.7 5.9 £ 0.3 5.5
54.5 MeV 1+0 119.8 + 0.7 120.6 18.7 + 0.7 7.3
2+ 1 64.7 £ 1.5 63.2 23.8 + 3.0 20.3
(110)
16.9 MeV 1+0 23.3 %+ 0.4 22.9 3.3+ 0.4 2.3
2+ 1 not observed 11.6 not observed 3.1
3+ 0 41.6 £ 0.7 42.8 13.8 £ 1.5 8.1
30.5 MeV 1+ 0 60.1 + 0.3 62.0 6.0 £ 0.3 3.6
2+ 1 35.3+ 0.3 36.5 5.2 £ 0.3 2.2
3+ 2 24.5 + 0.2 25.1 4.8 + 0.3 5.7
3+0 120.0 £ 1.5 123.7 9.8 + 1.5 8.0
54,5 MeV® 1+ 0 161.0 + 0.5 163.7 20.5 + 0.6 10.3
2+ 1 103.8 + 0.4 105.7 19.2 £+ 1.0 6.5
3+ 2 78.0 £ 0.3 79.6 15.6 £ 0.6 4.9
4+ 3 60.3 £ 1.5 59.7 11.2 £ 1.5 8.3
4+ 1 240.2 £ 1.5 245.0 9.8 + 1.5 14,1

%These values supersede the ones given in Table 1 of Ref. 3.
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Table II. <100> axial transition energies.

Beam Transition Observed Calculated
snersy “led Gt}
16.9 MeV 3p + 1Is 101.5 £ 1.0 100.0
2p+ 1s 58.3 £+ 0.5 57.9
3d + 2p 35.0 £ 0.5 33.9
several 21.9 ¢+ 1.0 20.52
30.5 MeV 2p+ 1s 161.6 + 2.0 168.4
3d~+ 2p , 110.4 + 1.0 111.4
4f » 3d 71.2 £ 1.0 72.0
4d + 3p 52.3 + 1.5 51.0
(5g) +» 4f 47.4 £ 1.5 46.7
several 34.1 £ 1.0 35.0°

a Strength-weighted mean of 12 closely-spaced tranéitions.
b Strength-weighted mean of 10 closely-spaced transitions.



Table III. Defect-corrected planar linewidths.?

Plane and Transition Observed Observed Calculated Calculated
Beam energy energy linewidth Tinewidth 1 linewidth 2
(keV) (keV) (keV) (keV)
(100)
30.5 MeV 1+ 0 43.0 5.9+ 0.3 5.5 6.7
54.5 MeV 1+ 0 119.8 18.7 + 0.7 7.3 15.3
2+ 1 64,7 23.8 £ 3.0 20.3 23.4
(110)
16.9 MeV 1+ 0 23.3 3.3+ 0.4 2.3 2.7
30.5 MeV 1+ 0 60.1 6.0+ 0.3 3.6 5.8
2-+1 35.3 5.2 + 0.3 2.2 4.4
3+ 2 24.5 4,8 + 0.3 5.7 6.7
54.5 MeV 1+ 0 161.0 20.5 = 0.6 10.3 19.2
2+ 1 103.8 19.2 + 1.0 6.5 15.6
3+ 2 78.0 15.6 + 0.6 4.9 14,2
4+ 3 60.3 11.2 £+ 1.5 8.3 15.1

@ Calculated linewidth 1 is the standard calculation (as in Sec. II);
calculated linewidth 2 takes into account a 0.9-um defect coherence
length.
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Table 1IV.

Energy scaling.

(100) 1+0 2+ 1
Electron Photon Photon
energy energy energy
(MeV) ( kEV) a Qay (kEV) (4] Qav
30.5 43.0
1.77
54.5 119.8 64.7
}1.80 1.73 } 2.00
80.2 237.2 139.2 1.98
1.63 } 1.96
110.2  399.5 256.0 |
(110) 1+0 2+ 1 3+ 2 4+ 3
Electron Photon Photon Photon Photon
energy energy energy energy energy
(MEV) ('(EV) a Qay (kEV) a Qav (kEV) o Qay (kEV) a Qay
16.9 23.3
1.63
30.5 60.1 35.31 24.5
’ 1.73 } 1.89 } 2.03
54.5 161.0 1.67 103.8 78.0 60.3
:1.73 1.88 }1.83 1.93 }1.92 2.00
80.2 310.2 211.7 162.7 128.8 1.93
I.GOJ 1.73 1.79 ]1.85
110.2 520 370 290 235
<100> 2p + 1s 3d -+ 2p
Electron Photon Photon
energy energy energy
(MeV) (keV) a Qay (keV) a aay
4.0 3.80
} 2.02 } _
16.9 58.3 1.89 35.0
1.76 } 1.98 1.98
30.5 161.6 } 110.4
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Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

1(a) The reciprocal lattice vectors used in a 3x3-beam <100>

2

3

5

(b)

(a)

(b)

calculation.

The reciprocal lattice vectors used in a 9-beam (100) calculation,
illustrating how the reciprocal lattice vectors of the planar
calculation reach much farther into the reciprocal lattice than

those of an axial calculation equivalent in size.

The <100> potential calculated for several different numbers of
beams.

The (100) potential calculated for several different numbers of
beams. Note that the (100) potential can be determined accurately

using only 13 terms, while the <10 potential requires more

than 121 terms.

The wave functions x(x) = (x*x)”2 with k = 0 for the first
three bound states of (110) diamond for an incident electron energy

of 16.9 MeV. Note the alternating parity of the wave functions.

Schematic diagram (not to scale) of the experimental arrangement at
the Livermore linac for the measurement of channeling-radiation

spectra from positrons or electrons (see text).

Schematic diagram (not to scale) of the experimental arrangement at
the Livermore linac for the measurement of the transmission of

positrons or electrons through a crystal (see text).
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

Tilt-angle scans near the (100) plane of a 17.4-um-thick silicon
crystal, using (a) the transmission of 56-MeV positrons and (b) the

radiation from 54-MeV electrons (note the expanded angular scale).

Map of the silicon crystal constructed from planar scans such as

the one shown in Fig. 5(a). The planes intersect at the <11

axis.

Transmission scans through the <110 axis of the silicon
crystal whose map is shown in Fig. 6(a) for 56-MeV positrons and

(b) for 56-MeV electrons.

Block diagram of the data-collection electronics (see text).

Raw (100) data spectrum with random spectrum below it for 54.5-MeV

electrons. Both spectra are for the same amount of beam flux.

Least-squares curve fit to the random-subtracted (100) spectrum of
Fig. 10. Lorentzian peaks and a second-order polynominal

background are fitted to the data (see text).

12(a) The (100) potential and eigenvalues for 16.9-MeV electrons.

(b) The (100) spectrum for 16.9 MeV.
(c) The (100) potential and eigenvalues for 30.5-MeV electrons.
(d) The (100) spectrum for 30.5 MeV.

(e) The (100) potential and eigenvalues for 54.5-MeV electrons.
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(f)

The (100) spectrum for 54.5 MeV.

In this and subsequent figures, all of the spectra shown are
random-subtracted. The vertical lines in the spectra indicate the
energies and relative intensities of the calculated transitions,
assuming equal initial level populations. The counting-rate units

are the same for all spectra obtained at the same energy.

Fig. 13(a) The (110) potential and eigenvalues for 16.9-MeV electrons.

Fig. 14

Fig. 15

(b)
(c)
(d)
(e)
(f)

(a)
(b)
(c)
(d)

The (110) spectrum for 16.9 MeV.
The (110) potential and eigenvalues for 30.5-MeV electrons.
The (110) spectrum for 30.5 MeV.
The (110) potential and eigenvalues for 54.5-MeV electrons.
The (110) spectrum for 54.5 MeV.
Note the increase with beam energy of the line energies and

linewidths.

The (111) potential and eigenvalues for 30.5-MeV electrons.
The (111) spectrum for 30.5 MeV.
The (111) potential and eigenvalues for 54.5-MeV electrons.

The (111) spectrum for 54.5 MeV.

The (111) spectra for (a) 30.5-MeV electrons and (b) 54.5-MeV
electrons. The solid curves are spectra constructed from the
calculated transition energies, strengths, and linewidths. The
dashed curves are the same as the solid curves, but with the
lTinewidth of each spectral line arbitrarily increased in order to

smooth out the predicted spectral shape (see text). Note the
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significant difference, for both cases, between the energy of the

maximum value of the dashed curve and that of the data.

Fig. 16(a) The <100> potential and eigenvalues for 16.9-MeV electrons.
(b) The <100> spectrum for 16.§ MeV.
(c) The <100> potential and eigenvalues for 30.5-MeV electrons.
(d) The <100> spectrum for 30.5 MeV.
(e) The <100> potential and eigenvalues for 54.5-MeV electrons.
(f) The <100> spectrum for 54.5 MeV.

Bloch-wave broadening for the energy levels is not shown in parts

(a), (c), and (e).

Fig. 17(a) The (111A) potential based upon experimental corrections to x-ray

and electron scattering factors (light solid curve), together with
the eigenvalues for 30.5-Mév electrons. The standard (111)
potential, as in Fig. 14(a), is shown as the dashed curve.

(b) The (111) spectrum for 30.5-MeV electrons, together with the
calculated spectra obtained from the standard (dashed curve) and
(111A) (light solid curve) potentials. The linewidths have been
corrected for defect effects (see text).

(c) The (111) spectrum for 54.5-MeV electrons, together with the
calculated spectra obtained from the standard (dashed curve) and

(111A) (1light solid curve) potentials. The linewidths have been

corrected for defect effects.

Fig. 18(a) Empirical (111B) potential based upon the best fit to the 30.5-MeV

data (heavy solid curve), together with the corresponding
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Fig. 19

Fig. 20

Fig. 21

(b)

(c)

eigenvalues; the standard (111) potential (dashed curve) as in

Fig. 14(a); and the (111A) potential based upon experimental
x-ray-diffraction data (light solid curve), as shown in Fig. 17(a).
The (111) spectrum for 30.5-MeV electrons, together with the
calculated spectra obtained from the (111B) potential (heavy solid
curve) and from the (111A) potential (light solid curve). The
Tinewidths have been corrected for defect effects.

The (111) spectrum for 54.5-MeV electrons, together with the
calculated spectra obtained from the (111B) potential (heavy curve)
and from the (111A) potential (1ight solid curve). The linewidths

have been corrected for defect effects.

The probability densities x(x)*x(x) for the bound states of the
(110) planar potential for all three incident electron energies,
with k = 0.5. Note that the wave functions draw in closer to the

planes as the electron-beam energy increases.

The scaling of photon energy vs. electron-beam energy, the latter
plotted in units of y. A denotes the (110) 1+ 0 transition
(average a = 1.67); B, the (100) 1 + 0 transition (average
a=1.73); C, the (110) 2 + 1 transition (average a = 1.83);

D, the (110) 3 » 2 transition (average a = 1.92); E, the (100)

2 + 1 transition (average a = 1.98); and F, the (110) 4+ 3

transition (average a = 1.93).

Calculated synthetic spectra for channeling radiation from 30.5-MeV
electrons along the (100) direction in diamond at room temperature
(solid curve) and at 810°C (dashed curve).
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